Presidential Approval and the Mixed Blessing of Divided Government

Stephen P. Nicholson
Georgia State University

Gary M. Segura
University of Iowa

Nathan D. Woods
Claremont Graduate University

Divided government provides ambiguous and conflicting information about which branch of government to hold accountable for government performance. The implication for presidents, who are easy targets of blame, is that they are less likely to be held accountable for government’s failures during periods of divided government because the public has a plausible alternative for affixing responsibility: the U.S. Congress. Because presidents are punished more heavily for negative outcomes than they are rewarded for favorable ones, we argue that a divided government context has the effect of increasing presidential approval relative to periods of unified government. At the individual level, using data from the 1972–1994 National Election Studies we show that divided government increases the probability that respondents approve of a president’s job performance. This effect is even stronger among citizens who are knowledgeable about control of government. Examining approval at the aggregate level from 1949 to 1996, we find further evidence that divided government boosts presidential approval ratings.

Scholars have devoted much energy toward unraveling the mysteries of presidential influence in Congress. The central finding in this literature is that the number of members in Congress who share the president’s partisanship is the most important predictor of whether presidents pass their programs (e.g., Bond and Fleisher 1990; Edwards 1989). Simply put, presidents with large legislative majorities typically enjoy the most success in dealings with Congress, while presidents with a minority of co-partisans will experience fewer legislative accomplishments.¹

Given the predominance in the last half century of divided government—split party control of the executive and legislative branches—the resource of

¹This is not to suggest that the national government as a whole is less productive (Mayhew 1991); rather that the product is less to the president’s liking.
large legislative majorities has been unavailable to presidents. Yet at the same time, divided government may present an opportunity for presidents to help themselves in the arena of public opinion. In this environment, citizens encounter greater difficulty trying to assess blame and credit. Because blame is the more salient consideration (Campbell et al. 1960; Cover 1986; Mueller 1973), presidents can point to the opposition Congress as the source of all problems, and divided government could be a president's best friend when attempting to avoid blame. Furthermore, since citizens perceive Congress as the most powerful branch of government (Hibbing and Theiss-Morse 1995), it is not a hard sell for presidents to blame Congress. Given this dynamic, we believe presidential approval ratings may vary systematically with partisan control of government. Specifically, we demonstrate in this effort that presidents are likely to have higher approval during periods of divided government and lower levels during periods of unified government.

If this is the case, we might have identified something of a paradox. Presidents clearly prefer to enjoy higher levels of public approval, whether for electoral prospects, a policy resource, or some other purpose. Divided government, we argue, increases presidential approval, but this resource comes at a high cost—an opposition Congress that is less willing to buy what the president is selling, thereby lowering the president's legislative success, which is itself an important determinant of approval. What is the net effect of these contradictory forces? In this effort, we focus on the question of whether divided government increases a president's approval ratings, ceteris paribus.

The more general question we ask regarding divided government and mass political attitudes is an important area of inquiry in itself. Divided government has become a fixture in contemporary American political life. In contrast to studies of the causes of divided government that examine political behavior of the electorate (Alesina and Rosenthal 1995; Fiorina 1992; Jacobson 1990; Segura and Nicholson 1995), research on its consequences focus on public policy (Fiorina 1992; Mayhew 1991) and the strategic behavior of politicians in the legislative arena (Ginsberg and Shefter 1990; Kornell 1991). However, research on the consequences of divided government has seldom asked how the presence of unified or divided government affects political behavior or attitudes among the citizenry (for exceptions, see Bennett and Bennett 1993; Leyden and Borrelli 1995; Nicholson and Segura 1999). We seek to fill this lacuna by exploring the question of whether citizens are more, or less, likely to approve of the president based on partisan control of the presidency and Congress.

We argue that the partisan division of government has such a significant and negative impact on the quality and availability of political information that the public is less able and/or less willing to hold the president accountable for

2 Some scholars have suggested that approval gives presidents greater capital to spend in passing their programs in Congress (Rivers and Rose 1985), though others have disputed this finding (e.g., see Bond and Fleisher 1990, and Covington, Wrighton, and Kinney 1995).
policy performance.3 Controlling for economic effects and important political events, as well as partisan and ideological effects, we test whether divided government helps presidents’ approval ratings at both the individual and aggregate levels of analysis.

\textbf{Our Argument}

We argue that divided government muddies the informational waters by offering citizens two potential targets of blame for policies, events, and outcomes they do not like.4 In the alternative, only one political party can be held responsible for unsatisfactory performance, and the president bears the full weight of negative evaluations in a unified government context. The result is that the president enjoys higher levels of approval when the weight of these negative evaluations is divided, and blame attribution becomes more difficult. It is not necessarily the case, however, that citizens “like” presidents more under divided government. More likely is it the case that citizens “dislike” a president less when their disapproval of government can be parcelled across both the executive and Congress. Underlying all of this is the crucial, if well-established, assumption that blame is more critical than credit in determining presidential evaluations. In this section, we will elaborate on the assumption we make concerning blame attribution, then turn our attention to a more explicit explanation of our theory and the hypotheses it suggests.

\textbf{The Negativity Bias}

Lau (1985, 119) defines negativity bias as the “greater weight given to negative information, relative to equally extreme and equally likely positive information in a variety of information-processing tasks.” Under divided government, then, presidents should benefit far more from sharing blame than they lose by sharing credit. Not surprisingly, research on presidential approval shows that negative information has a greater effect than positive information. For instance, finding that economic downturns hurt approval ratings while upswings do not have the opposite effect, Mueller (1973) concludes that for presidents “there is punishment but never reward.” Similarly, Goidel and Langley (1995) found that media coverage of negative economic conditions had a discernibly negative effect on public evaluations. Coupled with the routinely unfavorable media coverage of presidents (Brody 1991; Groeling and Kernell 1998; Grossman and Kumar 1981; Patterson 1996), negative evaluations should figure prominently in judgments of presidential performance. From our standpoint, we are agnostic as to the basis for the asymmetry between credit and blame in evalu-

3Our argument is consistent with earlier work on blame attribution in coalition government (Powell and Whitten 1993).

4There is a growing body of evidence that divided government has a direct negative effect on the overall amount of information as well (Bennett and Bennett 1993; Nicholson and Segura 1999).
ating presidents.5 \text{Rather, we proceed from the assumption, well established in the literature, that such a negativity bias exists. Thus, we believe that the information implications of divided government for the president have a greater effect on assigning blame than credit.}

\textit{Information Effects}

Beyond the obvious suspects of partisanship and ideology, scholarship on presidential approval clearly identifies two major determinants: assessments of political outcomes and events, and evaluations of economic conditions. Yet this logic assumes that the link between these assessments and the evaluation of the president is automatic, particularly for citizens who are not strong partisans.

We think that it is not. Rather, the assessment of political events and outcomes is endogenous to the information environment, which in turn is endogenous to divided government. For negative events and outcomes to hurt the president’s approval, citizens must attribute responsibility for those outcomes to the president. When government is divided, the president can offer a plausible counterproposal—blame the Congress controlled by the other party. Citizens might turn to the media for cues as to who is to blame, but the media is more likely to offer “either/or” or “he said/they said” sorts of coverage in a divided government context.

What is more, average citizens, for whom party differences are likely to be more salient than institutional sources of conflict, probably expect more from a unified government. That is, natural institutional conflict, implicit in the separation of powers as intended by the founders, is not widely grasped by the public, nor is the decentralized nature of American political parties. As a result, both voters and pundits are likely to have raised expectations regarding the policy productivity of a unified government. By contrast, both politicians and the media can offer conflicting attributions of blame in a divided government context, and the public might well be expecting less given the partisan divisions. The effect is to offer conflicting, and marginally less useful, information to citizens inclined to make evaluations based on performance. In a previous effort, two of us found evidence of this blame attribution effect when looking at the impact divided government had on the propensity of voters to choose out-party congressional candidates in midterm elections (Nicholson and Segura 1999). Controlling for other identified predictors of the midterm vote, we found that the president’s party was not punished as severely by voters under divided government.6

5A number of explanations for the negativity bias exist. In the psychology literature, Kanouse and Hansen (1972) conclude that because people see the world in positive terms, greater weight is given to negative information which, given its infrequency, is relatively less costly to process. Lau (1985) suggests it stems from the proclivity of individuals to be risk-averse, thereby making negative information relatively more useful than positive information.

6We also found that this effect was most noticeable among voters who were not strongly identified with either political party and who were aware that government was, in fact, divided.
To be sure, we do not expect everyone to be susceptible to such effects. Yet the president remains the most visible political figure and will, under most circumstances, be given a good portion of the blame for government’s failures. Nevertheless, when government is divided, the portion of the population holding the president accountable for unsatisfactory performance is likely to be smaller than it might have been if the president’s party also controlled the other elected branch. Our expectation is clear:

H1: Respondents are more likely to approve of presidents during periods of divided government.

There is, however, one caveat. Difficulty in blame attribution may presuppose that the respondent knows that government is divided. Respondents unaware of the partisan division of government do not have two institutions available upon which they might affix blame for outcomes they do not like. For these respondents, the president would remain the only available culprit. Certainly, it is possible that the media-driven aspects of this effect would persist even in the absence of this knowledge. Yet our expectation is that those knowledgeable about partisan control of government are more likely to manifest this information effect. Those without such knowledge are unlikely to make the linkages between presidential approval and partisan control of government. Thus, we expect that the divided government effect—the decreased propensity to blame the president and the increased likelihood of approving—will be strongest among voters who actually know that there is an alternative to which blame may be affixed.

H2: Divided government will have a larger positive effect on presidential approval among respondents who know that government is divided.

Data and Variables

The data used to test our first two hypotheses consist of pooled responses from the 1972–1994 National Election Studies (NES). In addition, as we discuss below, we generate a number of contextual variables to measure the effects of divided and unified government and to account for differences between presidential and midterm election years. The individual-level results presented here, then, are a partial test of our theory and will be complemented with an aggregate analysis in the following section.

Our analysis at the individual level begins with the 1972 election, the first year the NES asked respondents whether they approved or disapproved of the way that the president is handling his job. Presidential Approval equals one (1) if the respondent approves of the way the president is handling his job and zero (0) if the respondent disapproves.

Divided Government is the independent variable of central interest. This variable is coded one (1) if government is divided—the presidency and at least one chamber of Congress are controlled by different political parties—and zero (0)
if unified. Ceteris paribus, we expect *Divided Government* to boost a president’s approval rating and that therefore it will have a positive effect on presidential approval. In all, our analysis includes three surveys in which government is unified (1978, 1980, and 1994) and nine surveys in which government is divided (1972–1976 and 1982–1992).

The remaining variables in our analysis—partisanship, ideology, events and economic evaluations—make up the primary ingredients of presidential approval at the individual level of analysis (e.g., Goidel, Shields, and Peffley 1997; Kinder 1981; Ostrom and Simon 1988), and thus are important controls.

Partisanship and ideology are central to accounting for an individual’s predispositions when evaluating presidents. While presidents routinely experience declines in approval over their terms, this decline seems to be most evident among out-party identifiers (Presser and Converse 1976–1977). Generally speaking, partisans are more stable in their levels of approval or disapproval (Goidel, Shields, and Peffley 1997). Similarly, Hibbs, Rivers, and Vasilatos (1982) found that public responses to political or economic events are conditioned by partisan commitments. Not surprisingly, then, nonpartisans or independents have been among those most susceptible to media and information effects (Ansola-behere, Behr, and Iyengar 1993; Goidel and Shields 1994).

Thus, there is little doubt that partisanship and ideology figure prominently in approval formation. *Co-partisan* is a seven-point scale that incorporates both partisan preference and strength of preference. The highest value (6) reflects a strong identification with the president’s party, and the lowest value (0) corresponds to a strong identification with the opposing party. The middle category (3) consists of “Pure Independents” who do not lean toward either party. To account for those individuals whose partisanship is not an accurate reflection of their political beliefs, we also control for ideology. *Shared Ideology* is a seven-point scale on which the highest value (6) indicates a favorable ideological bias for the president, such as liberal respondents in Democratic regimes and conservative respondents with Republican presidents, while the lowest value (0) indicates an unfavorable bias, or the reverse. We expect that both variables are positively related to approving of the president’s job performance.

The literature of presidential approval also has strongly demonstrated that significant political events have an immediate short-term effect on the level of public support (Brace and Hinckley 1991; Brody and Page 1975; Clark, Rap-kin, and Stewart 1994; Kernell 1978; Mueller 1973; Norpoth 1996; Ostrom and Simon 1985; Parker 1995). Scandal, military action, resignations, social crises such as riots, and even a presidential illness can be expected to shape the president’s level of support. To account for these short-term shocks, we include the variable *Events*, which is a summary evaluation of the effect of recent politically important events.⁷ The data for this variable for most of the years are

⁷Including a control for exogenous shocks is helpful for eliminating the effects of history without relying upon a more crude control of time, like administration dummy variables.
taken directly from Brace and Hinckley (1992) and reaggregated quarterly instead of monthly, using precisely the same coding conventions outlined in their effort. For this individual-level analysis, the variable takes on only one value for all respondents from each election year and represents an aggregation of events over the first three quarters of the year. Events varies from negative one \((-1)\) to one \((1)\), with a negative value indicating that the election year contained more harmful political occurrences, a positive value indicating that events for the year work to the president’s advantage, and zero \((0)\) indicating a balance between negative and positive events in the three quarters preceding the election. We naturally anticipate a positive coefficient.

The president’s job performance is also strongly linked to economic evaluations. Although there is widespread agreement among scholars that economic evaluations matter, disagreement exists over which economic evaluations, retrospective versus prospective (Chappell and Keech 1985; MacKuen, Erikson, and Stimson 1992; Norpoth 1996; Peffley and Williams 1985) or pocketbook versus sociotropic (Conover and Feldman 1986; Kinder 1981), better explain presidential approval. The first debate turns on whether individuals are prospective in their assessments, meaning they consider what they anticipate as the future state of affairs—for example the economy—or retrospective, implying that current and past outcomes, on the economy or some other dimension, dominate their evaluations. The second debate concerns whether citizens make pocketbook assessments, judgments that turn on personal considerations, or sociotropic evaluations, judgments that turn on the nation’s well-being. Unfortunately, we cannot investigate the effects of pocketbook and sociotropic considerations because the sociotropic measure in the NES is not available before 1980. In the aggregate-level analysis, however, we use objective measures of economic performance, which presume that societal conditions matter to at least some citi-
zens. Fortunately, we are able to examine the effect of retrospective and prospective evaluations.

Retrospective Evaluation derives from a question that asked respondents "Are you better off or worse off financially than you were a year ago?" It is coded one (1) for "better off," zero (0) for "same," and negative one (−1) for "worse off." Prospective Evaluation is derived from a question that asks, "Now, looking ahead—do you think that a year from now you will be better off financially, worse off, or just about the same as now?" This variable is coded one (1) for "better off," zero (0) for "the same," and negative one (−1) for "worse off." Although these variables are correlated, the value is well below the threshold for concern about multicollinearity (Spearman's ρ = .25). We expect that both types of economic evaluations will be positively related to presidential approval.11

This study includes both presidential and midterm elections. To account for the differences between these types of election years, we include a control variable, Midterm Election, coded one (1) for midterm election years and zero (0) for presidential election years. Given the well-documented downturn in approval and typical loss of seats for the president's party at the midterm election, we hypothesize that Midterm Election should be negatively related to presidential approval.12

Testing and Results at the Individual Level

Since the dependent variable in our individual analysis is binary, we use probit analysis. Table 1 addresses both our first and second hypotheses regarding whether

11 An alternative would be to include some aggregate measures of macroeconomic performance. Since these measures would be constant across observations from each year, they add little not already captured in the individual data. We did replicate the following analyses including inflation, unemployment, and a misery index, but in the presence of the individual-level data, they never reach significance and add no explanatory power to the models.

12 Excluded from this analysis is an array of administration-specific dummy variables. Earlier work on approval focused on intra-administration variation and treated the inter-administration differences as "fixed effects." The central premise of this effort, however, is that these differences between administrations are not fixed—that is, idiosyncratic to each different presidency—but systematic and, hence, can and should be accounted for by systematic variables. Administration dummies would, by definition, absorb virtually all inter-administration variance that is better explained by systematic variables, including divided government and, conceivably, other factors that vary substantially over time. In fact, this is exactly what happens (results available from the authors). With the inclusion of the dummy variables, the remaining variance for divided government to explain is limited to changes within single administrations, where variance on all of these systematic forces is dramatically constrained. Since administration dummy variables are little more than proper names, there is no theoretical justification beyond "presidents differ," and this begs the question as to why. If administrations during divided government systematically manifest higher levels of public support, ceteris paribus—to say nothing of variance in other more meaningful variables—then the replacement of these ad hoc proper names with theory-driven systematic variables, including divided government, is a theoretical advancement. "The role of comparative research in the process of theory-building and theory-testing consists of replacing proper names of social systems by the relevant variables" (Przeworski and Teune 1970, 30).
TABLE 1

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Basic Model Coefficients</th>
<th>Respondent Knowledge Controlled Model Coefficients</th>
<th>Respondents Knowledgeable of House Control Model Coefficients</th>
<th>Respondents with No Knowledge of House Control Model Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Std. Errors</td>
<td>Min→Max</td>
<td>Std. Errors</td>
<td>Min→Max</td>
</tr>
<tr>
<td>Divided Government</td>
<td>.434***</td>
<td>.170</td>
<td>.211***</td>
<td>.083</td>
</tr>
<tr>
<td></td>
<td>(.026)</td>
<td></td>
<td>(.046)</td>
<td></td>
</tr>
<tr>
<td>Co-Partisan</td>
<td>.289***</td>
<td>.591</td>
<td>.296***</td>
<td>.607</td>
</tr>
<tr>
<td></td>
<td>(.006)</td>
<td></td>
<td>(.006)</td>
<td></td>
</tr>
<tr>
<td>Ideology</td>
<td>.170***</td>
<td>.379</td>
<td>.177***</td>
<td>.396</td>
</tr>
<tr>
<td></td>
<td>(.010)</td>
<td></td>
<td>(.010)</td>
<td></td>
</tr>
<tr>
<td>Prospective Evaluation</td>
<td>.132***</td>
<td>.102</td>
<td>.141***</td>
<td>.110</td>
</tr>
<tr>
<td></td>
<td>(.016)</td>
<td></td>
<td>(.017)</td>
<td></td>
</tr>
<tr>
<td>Retrospective Evaluation</td>
<td>.195***</td>
<td>.150</td>
<td>.192***</td>
<td>.149</td>
</tr>
<tr>
<td></td>
<td>(.013)</td>
<td></td>
<td>(.014)</td>
<td></td>
</tr>
<tr>
<td>Midterm Election</td>
<td>.051†</td>
<td>.020</td>
<td>-.273***</td>
<td>-.106</td>
</tr>
<tr>
<td></td>
<td>(.029)</td>
<td></td>
<td>(.043)</td>
<td></td>
</tr>
<tr>
<td>Events</td>
<td>.199***</td>
<td>.153</td>
<td>.384***</td>
<td>.292</td>
</tr>
<tr>
<td></td>
<td>(.017)</td>
<td></td>
<td>(.025)</td>
<td></td>
</tr>
<tr>
<td>Knowledge of House Control</td>
<td>—</td>
<td>—</td>
<td>-.274***</td>
<td>-.106</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Divided Government X Knowledge</td>
<td>—</td>
<td>—</td>
<td>.237***</td>
<td>.091</td>
</tr>
<tr>
<td>of House Control</td>
<td>—</td>
<td>—</td>
<td>(.048)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-1.462***</td>
<td>—</td>
<td>-1.157***</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(.039)</td>
<td></td>
<td>(.057)</td>
<td></td>
</tr>
<tr>
<td>Sample (n)</td>
<td>18197</td>
<td></td>
<td>15829</td>
<td></td>
</tr>
<tr>
<td>Chi-Square</td>
<td>5043.80</td>
<td></td>
<td>4738.77</td>
<td></td>
</tr>
<tr>
<td>Significance</td>
<td>.000</td>
<td></td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>PPC</td>
<td>72.4%</td>
<td></td>
<td>73.3%</td>
<td></td>
</tr>
<tr>
<td>PRE (Lambda-p)</td>
<td>.343</td>
<td></td>
<td>.363</td>
<td></td>
</tr>
</tbody>
</table>

***Significant at p ≤ .001 †Significant at p ≤ .075 (two-tailed tests)
divided government boosts an individual's approval of the president's job performance. All of the variables in the basic model except \textit{Midterm} (column 1) achieve statistical significance and are in the predicted direction. In the second model, which controls for the respondents' levels of information, \textit{Midterm} is in the predicted direction and highly significant. Overall, the model goodness-of-fit measures indicate that we do a reasonably good job of predicting presidential approval. Both of the models correctly predict between 72\% and 74\% of cases, and the proportional reduction of error (Lambda-p) for the models in columns 1 and 2 is .343 and .363, respectively.13

Column 1 of Table 1 depicts the results from a general model of presidential approval. Controlling for other factors, H1 is supported. \textit{Divided Government} substantially increases the probability that a respondent will approve of the president's job performance. To look at the maximum effect of \textit{Divided Government} and the other variables in the model, we calculated the predicted probabilities (see Long 1997). Holding all other variables at their mean values, \textit{Divided Government} increases the probability of approval by .170. Although the effect of \textit{Divided Government} does not appear to be as strong as \textit{Co-partisan} (.629), it does appear to have a greater influence than either \textit{Retrospective Evaluation} or \textit{Prospective Evaluation} has individually.

The anomalous finding on \textit{Midterm Election} in the basic model is something of a surprise, though the net effect is very small. This anomaly disappears once we control for respondent knowledge when the effect is significant and in the hypothesized direction.

\textbf{The Effects of Divided Government on Knowledgeable Citizens}

If respondents know that government is divided, they should be more likely to reason about presidential accountability in the manner we have argued. Although the NES does not ask a specific knowledge question regarding divided or unified control of government, it does ask respondents whether they know which party is in control of the House of Representatives. Assuming that respondents know the party of the president, then, knowledge of which party controls the House of Representatives should serve as a reasonable proxy for knowledge of whether government is unified or divided. The variable \textit{Knowledge of House Control} is coded one (1) if the respondent correctly identified the party in control of Congress and zero (0) if the respondent did not know the answer or made an incorrect identification.

13To be certain that the uneven distribution of cases between divided and unified government, and across years, did not cause error-term problems that would bias estimates, we replicated the analysis using Huber/White robust standard error estimates and controlled for clustering by year and on any of the independent variables. The results throughout were consistent with those presented in Table 1, and they suggest that there are no patterns in the error terms to indicate that model specification was problematic. Diagnostic results are available from the authors.
To evaluate whether respondents who are knowledgeable about divided or unified government are more likely to approve of the president’s job performance, we do two things. First, we include an interaction term, Divided Government × Knowledge of House Control, along with both main effects variables. Second, for ease of interpretation, we present a split sample analysis estimating the effects of divided government, first among those who are informed, and second among respondents not aware that government is divided.¹⁴

The inclusion of both the Knowledge and Divided Government dummies as well as the interaction term allows us to estimate three unique effects, with individuals who do not know which party controls the House and who respond under conditions of unified government serving as the unexpressed category for comparison purposes. The coefficient on the Knowledge variable and the resulting change in the predicted probability show the difference that knowledge of House control has on presidential approval among citizens in a unified context. Similarly, the coefficient and estimated change for Divided Government represents the effects of divided government alone on unknowledgeable citizens. The interactive term, then, represents the final category: respondents in a divided government context aware of the partisan control of the House.

Column 2 of Table 1 presents the results of the model with the interaction term. Many of the effects are unchanged from the base model, but three coefficients are worth noting. First, and not surprisingly, the coefficient on Divided Government, whose influence is now divided between the dummy and the interaction term, is smaller. Second, as we already reported, the effect on Mid-term Election becomes significant in the predicted direction. Finally, the coefficient on Events is considerably larger, as is its effect on the predicted probabilities.

The coefficient on Divided Government is significant and positive, suggesting that even among the uninformed, respondents under divided government are more likely to approve of the president than respondents under unified government. The coefficient for the interaction term, Divided Government × Knowledge of House Control, is statistically significant—larger than the coefficient on the Divided Government variable alone—and its sign is in the predicted direction, directly supporting H2. That is, the positive effect of divided government on approval is stronger among respondents who know that government is divided. That knowledge, we argue, is a precondition for the attachment of blame for unfavorable policy outcomes to some source other than the president. The coefficient on Knowledge of House Control is both negative and significant, an indication that among respondents living under unified government, knowing that government is unified generally lowers the approval of the president. This, too, is consistent with our expectations that blame assignment is simpler, not only when the unified nature of government

¹⁴Nagler (1991) argues that for logit and probit, these two approaches are roughly equivalent and valid ways to address the interaction of one independent variable with all others.
offers no alternative villains, but particularly when respondents know there are no alternative villains.

To gain more readily interpretable estimates of the effects, we present split sample analyses in columns 3 and 4 of Table 1. Column 3 estimates the relationships in question, as well as the predicted probabilities, among those respondents who know which party controls the House and, we infer, know whether government is divided or unified. By contrast, column 4 reports relationships among respondents who do not know which party controls the House. Consistent with the interactive model presented in column 2, it is very clear that divided government has its strongest effect among those who know whether government is divided or unified. Among these informed respondents, the probability that they approve of the president is .191 higher when government is divided. For respondents not familiar with the partisan division or unity of government, the results still suggest that divided government helps the president—a possible indication that the media effects of this changed information environment matter even in the absence of direct respondent knowledge. Nevertheless, as H2 suggests, the effect is much smaller. Divided Government increases the individual probability of support by only .061, significant but substantially smaller than the change among the informed respondents.\(^\text{15}\)

The remaining predictors perform more or less consistently across specifications. Not surprisingly, the overall goodness-of-fit is better for the model of respondents who are aware of the partisan control of the branches. In summary, our findings thus far indicate that individual citizens are more likely to approve of presidents during divided government, especially those citizens who know that government is divided.

Aggregate Analysis

The individual level results are subject to two specific criticisms. First, the analysis was confined to the period 1972–1994 due to the unavailability of NES data on the approval question before 1972. In that time frame, the number of periods of unified government is small and all of the periods are entirely Democratic in character. Furthermore, each of the NES surveys takes place during an election. Our results, it might be argued, are not generalizable when looking at the performance of GOP presidents during unified government or during nonelection periods. A second criticism is that the individual analysis

\(^{15}\) Controlling for divided and unified government, the direct effect of Knowledge varies (results not presented). Under divided government, knowledge has no statistically discernible effect on presidential approval, while under unified government knowing that government is unified substantially reduces the probability by about 11% that the respondent approves of the president. This result, while not central to our inquiry, is consistent with our theory that respondents who know that government is unified have only the president and his co-partisans to blame. Those unfamiliar with the partisan unity of government are more likely to blame the other party.
controls for pocketbook effects without being able to control for sociotropic economic concerns. This is again due to data limitations in the NES, and one counter explanation could be that macroeconomic performance indicators would, if included, undermine or eliminate the significance of divided government to presidential approval.

To further establish our claims, we turn to an aggregate analysis of presidential approval. Our expectation is that aggregate approval of the president should reflect the individual-level dynamic identified in the earlier analysis. If our hypothesis regarding the information effects of divided government among citizens is correct, we should see the same pattern of presidents doing better in the aggregate, ceteris paribus, when government is divided.

H3: Presidential approval ratings will be higher during periods of divided government.

The data for the aggregate analysis cover the period from 1949 to 1996, inclusive. The unit of analysis is the quarter, so that there are four observations per year. **Aggregate Approval** is the dependent variable, and it is defined as the percentage of the population expressing support for the president in the Gallup Polls.

There are four specific types of predictors. First, to directly test our hypothesis, **Divided Government** is again entered in the equation and is again coded one (1) if the elected branches were held by opposite parties in that quarter, and zero (0) otherwise. We expect the coefficient on this variable to be positive, indicating that the overall approval of the president is higher while the opposition controls at least one chamber of Congress.16

We again control for exogenous shocks and politically important events. This time, however, events are aggregated only by quarter to allow for variation across each observation. **Events**(*Q*) again varies from negative one (−1) to one (1), with a negative value indicating that the quarter contained more harmful political occurrences, a positive value indicating that events for the quarter work to the president’s advantage, and zero (0) indicating a balance or, as is more often the case with the quarterly aggregation, the absence of noteworthy political events altogether. Again, we expect a positive relationship.

Third, we include an array of economic measures. While the presidential approval literature has debated the relative importance of economic factors versus political events, we follow Ostrom and Simon (1985) and Kernell (1978) and control for these potentially important effects. Specifically, we include three direct measures of economic performance, each well grounded in the literature: **Inflation, Unemployment, and GDP Growth.**

16We again exclude administration dummies. Further explanation of this trade-off and results demonstrating the inclusion of administration dummies are available from the authors.
Inflation is the annualized estimate of the inflation rate based on the quarter’s increase in the Consumer Price Index (CPI) over the previous quarter. Our expectations are that as Inflation increases, aggregate support for the president will decrease. Unemployment is a straightforward measure of economic performance and is measured here as the quarterly estimate of joblessness as reported by the Bureau of Labor Statistics. When Unemployment is high, support for the president should be lower. Finally, GDP Growth is the official estimate of economic growth for the quarter annualized. In this instance, we would expect GDP Growth to be positively associated with the aggregate support for the president. Pair-wise correlations between these variables never exceed .17 in absolute value and, hence, multicollinearity is not a problem.

Following well-established conventions (Kernell 1978; MacKuen, Erickson, and Stimson 1992), we included a lagged version of the dependent variable, Lagged Approval. Lagged Approval is simply the value of the dependent variable in the previous quarter. The inclusion of this lagged variable essentially “detrends” the time series, effectively eliminating the problem of the error terms being autocorrelated. Without this lagged measure, the observations would not be independent, the assumptions of OLS regression would be violated, and the estimators would be unreliable. The remaining independent variables, then, are left to explain only the meaningful variations both within and across administrations that are driven by systematic forces. Naturally, we anticipate that Lagged Approval will be positive and significant.

Testing and Results for Explaining Aggregate Approval

Given that Aggregate Approval is a continuous measure, we use regression analysis. Column 1 of Table 2 presents the results of an OLS regression analysis. To begin, the adjusted R-squared indicates that almost 85% of the variance in presidential approval is explained by the model. Furthermore, the F statistic suggests that the model taken as a whole is statistically significant.

Similar to our earlier findings, divided government appears to help presidents in their quest for high approval ratings. As we expected, Divided Government is statistically significant (p < .01), and the sign of the coefficient is positive. The coefficient (1.928) indicates that on average a change from unified to divided control of government increases approval of presidents by about 1.93%.

\[\text{Inflation} = \text{the annualized estimate of the inflation rate based on the quarter's increase in the Consumer Price Index (CPI) over the previous quarter.} \]

\[\text{Unemployment} = \text{a straightforward measure of economic performance measured as the quarterly estimate of joblessness as reported by the Bureau of Labor Statistics.} \]

\[\text{GDP Growth} = \text{the official estimate of economic growth for the quarter annualized.} \]

\[\text{Lagged Approval} = \text{simply the value of the dependent variable in the previous quarter.} \]

\[\text{Aggregate Approval} = \text{a continuous measure used in regression analysis.} \]

\[\text{Divided Government} = \text{statistically significant (p < .01), and the sign of the coefficient is positive. The coefficient (1.928) indicates that on average a change from unified to divided control of government increases approval of presidents by about 1.93%.} \]
The results for the control variables merit brief mention. As expected, the coefficients for **Lagged Approval**, **Events(Q)**, **Inflation**, and **GDP Growth** are all statistically significant and in the predicted direction. Although the sign on the coefficient for **Unemployment** is in the predicted direction, it fails to achieve conventional levels of statistical significance using a one-tailed test.

Given that our data are a quarterly time series of presidential approval ratings, we test for autocorrelation or covariation of error terms at multiple points in time (see Gujarati 1988, chap. 12; Ostrom 1990). This situation may cause biased estimates of the standard errors of the slope coefficients. Although the Durbin-Watson d statistic (2.02) presented in Table 3 suggests that autocorrelation is not a concern, this statistic is notoriously unreliable when using a lagged endogenous variable (Ostrom 1990).

An examination of the residual plot showed no systematic pattern. Although examining the residuals is highly informative for detecting autocorrelation, as

Table 2

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Ordinary Least Squares Coefficients, Betas</th>
<th>Cochrane-Orcutt</th>
<th>Robust Regression Error-Corrected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagged Approval</td>
<td>.879*** (.032)</td>
<td>.882*** (.031)</td>
<td>.886*** (.029)</td>
</tr>
<tr>
<td>Divided Government</td>
<td>1.928** (.660)</td>
<td>1.817** (.652)</td>
<td>2.216*** (.592)</td>
</tr>
<tr>
<td>Events(Q)</td>
<td>1.486*** (.446)</td>
<td>1.498*** (.445)</td>
<td>.760† (.401)</td>
</tr>
<tr>
<td>Inflation</td>
<td>-.222* (.099)</td>
<td>-.227** (.098)</td>
<td>-.308*** (.089)</td>
</tr>
<tr>
<td>Unemployment</td>
<td>-.228 (.205)</td>
<td>-.214 (.201)</td>
<td>-.195 (.184)</td>
</tr>
<tr>
<td>GDP Growth</td>
<td>.157* (.073)</td>
<td>.149* (.073)</td>
<td>.215*** (.066)</td>
</tr>
<tr>
<td>Constant</td>
<td>6.737** (2.400)</td>
<td>6.562** (2.362)</td>
<td>5.937*** (2.156)</td>
</tr>
<tr>
<td>rho</td>
<td>—</td>
<td>-.021 (.073)</td>
<td>—</td>
</tr>
<tr>
<td>Sample (n)</td>
<td>186</td>
<td>185</td>
<td>186</td>
</tr>
<tr>
<td>F</td>
<td>170.95</td>
<td>178.51</td>
<td>218.41</td>
</tr>
<tr>
<td>F-probability</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Adj. R-Square</td>
<td>.8464</td>
<td>.8527</td>
<td>—</td>
</tr>
<tr>
<td>Durbin-Watson</td>
<td>2.024</td>
<td>2.007 (Transformed)</td>
<td>—</td>
</tr>
</tbody>
</table>

***Significant at $p \leq .001$ **Significant at $p \leq .01$ *Significant at $p \leq .05$ †Significant at $p \leq .075$ (two-tailed tests)
a further test we present the results of a Cochrane-Orcutt regression—a well-known iterative procedure that corrects for autocorrelation—in column 2 of Table 2. Comparing the results of column 2 with the OLS model in column 1, it is apparent that we can rule out autocorrelation as a problem. The standard errors appear to be unbiased.

Despite our finding a random pattern of residuals, they did reveal the possibility of outliers or influential cases. One method to correct for the influence of these cases, and others that are not readily apparent in the residual plot, is robust regression (Western 1995). Specifically, we use a biweight procedure wherein the estimator gives less weight to cases with large residuals and behaves like the mean for modest values (see Berk 1990; Western 1995). Column 3 presents the results of the robust regression. Turning to our central inquiry concerning the effects of divided government on presidential approval it appears that the results from the aforementioned procedures are sound. Indeed, the size of the coefficient for Divided Government slightly increases (2.216), and the significance level improves ($p < .001$) due to the standard error slightly decreasing in value (.592). The robust regression procedure also increases the size of several coefficients for the other control variables. The coefficient on Events(Q) is somewhat smaller and only reaches marginal statistical significance ($p < .075$, two-tailed) and remains in the predicted direction.\(^{20}\)

Overall, the results in Table 2 provide convincing support for our claim that divided government increases approval ratings. To investigate further the effects of government control on approval, we split the sample according to whether government was unified or divided. The results are consistent with those presented (results not shown). The model predicting approval during unified government explains over 90% of the variance (adjusted $R^2 = .9020$), while a comparable model during divided government explains only 77% (adjusted $R^2 = .7727$). Furthermore, while coefficients are not directly comparable across model specifications, it is worth noting that the coefficient on the Events(Q) variable—which controls for the effect of political events and outcomes on approval—is twice as large (with a smaller standard error) for unified government (2.227, $p = .004$) than for divided government (1.178, $p = .044$). The Beta-value for Events (Q) in the unified model is also modestly larger (.111 compared to .095). These results, though only suggestive, are further evidence that political information is clearer and more determinant of approval (vis-à-vis other effects) when unified government makes blame attribution easier. Taken together with our earlier findings from Table 1, we can be confident that divided government is a president’s ally in the arena of public opinion.

\(^{20}\)There is no evidence of heteroskedasticity or missing predictors. The Ramsey RESET test for omitted variables is negative, as is the Cook-Weisberg estimation of heteroskedasticity, and residual plots show no discernible patterns in the remaining error terms.
Conclusion

We set out to inquire whether divided government had attitudinal effects. Specifically, we wanted to know if the division of responsibility between the political parties across the branches of government helped presidents with public opinion. We have demonstrated that divided government, at least in this respect, works to the advantage of presidents. Controlling for well-known predictors of approval, divided government significantly raises the likelihood that a respondent will approve of a president’s job performance. The effect is more pronounced among those individuals who are knowledgeable about control of government. An information environment characterized by less available usable information and the presence of competing messages of blame attribution frees presidents from the apparent full responsibility for all political events and outcomes. Because presidents lose less in terms of credit-claiming ability than they gain in blame avoidance, presidents enjoy relatively higher levels of approval during periods of divided government.

Finally, these individual-level results are replicated at the aggregate level of analysis over a longer period. The approval rating of the president is measurably and significantly higher during divided government, and the model of aggregate approval built on political information explains more variance during unified government than in periods of divided government. Divided government clearly makes blame attribution more difficult and the public more approving of the president.

As we suggested, this is not to say that presidents are necessarily “liked” more under divided government. More likely, we believe that presidents are “disliked” less when they cannot be solely held responsible for negative government outputs. Neither do we wish to imply that presidents are happier under divided government. We suggested earlier that the net effect of this paradox—popular presidents with opposition congresses—remains an open question. Our naive assumption would be that if given a choice, presidents would prefer unified government. And the rigorous campaign activities of sitting presidents bear witness to this expectation. Yet the experiences of President Bill Clinton, whose approval was greatly enhanced after his party lost control of the other branch, do raise the question as to whether the division of government is as unpleasant to presidents as we naively assumed. We suggest here that one particular resource—public approval—tends to be more plentiful for presidents facing divided government.

We believe that these findings are important. Political scientists have a long-standing affection for responsible party government, and the persistence of divided government in the latter half of the twentieth century has only increased concern about the potential for policy breakdown or gridlock when party politics intersects with the separation of powers (Brady and Volden 1998; Mayhew 1991). Here we have demonstrated that divided government may actually benefit presidents by showing that presidents enjoy higher approval when the other
party controls one or both chambers of Congress. Thus, our findings suggest that not only are a president’s political fortunes disconnected from those of his congressional co-partisans, his political standing with the public might be inversely related to theirs.

Manuscript submitted 31 May 2001
Final manuscript received 12 November 2001

References

Presidential Approval and Mixed Blessing of Divided Government

Stephen P. Nicholson is assistant professor of political science, Georgia State University, Atlanta, GA 30303-3083.

Gary M. Segura is associate professor of political science, University of Iowa, Iowa City, IA 52242.

Nathan D. Woods is doctoral candidate of political science, Claremont Graduate University, Claremont, CA 91711.